VR.VS

Electric actuator

Position indicator

VR and 3-position models

Modular position indicator with three removable position markers (3 yellow +2 black), adjustable according the type of valve to be actuated.

Valve	0°	90°	180°
2-way: $0^{\circ}=$ closed $90^{\circ}=$ open VR models			
3-way (L) : models: - VR - VS GF3 \& GFS			
3-way (T) : Ex: T1 models: - VR - VS GF3 \& GFS			

2-position VS models

2- position spherical indicator

Mounting of the position indicator (appendix p. 21 mark 1) : mount the seal ring and the indicator then the window with the 4 screws M4.

Dimensions

VR models

Square / Star	17 mm	
Drive depth	19 mm	
Diameter	50 mm	70 mm
Taraudé M	M 6	M 8
Depth	15 mm	17 mm
Screw number	4	4
Screws maximal length (+ valve connection plate height)	10 mm	12 mm
Minimum distance above the valve for actuator mounting	$\mathrm{H}=311 \mathrm{~mm}$	

VS models

Square / Star	22 mm	
Drive depth	25 mm	
Diameter	70 mm	102 mm
Taraudé M	M 8	M 10
Depth	19 mm	24 mm
Screw number	4	4
Screws maximal length (+ valve connection plate height)	14 mm	16 mm
Minimum distance above the valve for actuator mounting	$\mathrm{H}=375 \mathrm{~mm}$	

Mounting on valve

VR model:

Possible fixations : F05 (4 xM 6 with Ø50) and F07 (4 xM 8 with Ø70), star 17, depth 19 mm .
Necessary height above the valve for the mounting of the actuator : $\mathrm{H}=311 \mathrm{~mm}$.

VR model:

Possible fixations : F07 ($4 \times \mathrm{M} 8$ with $\varnothing 70$) and F10 ($4 \times \mathrm{M} 8$ with $\varnothing 102$), star 22, depth 25 mm .
Necessary height above the valve for the mounting of the actuator : $\mathrm{H}=375 \mathrm{~mm}$.

Mounting / disassembly of the cover and position indicator

For the wiring and setting of the actuator, it is necessary to remove the cover.
Mounting of the cover (appendix p. 21 mark 2) : make sure that the seal ring (appendix p. 21 mark 7) is correctly placed in its position, mount the cover and tighten the 4 screws M6 (appendix p. 19 mark 3, torque : max. 6 Nm).
Mounting of the position indicator for VR (appendix p. 21 mark 1) : fit the indicator onto the outgoing axle (according the diagram p. 2).
Mounting of the position indicator for VS (appendix p. 21 mark 1) : mount the seal ring and the indicator then the window with the 4 screws M4 (according the diagram p. 2).

Emergency manual override

4
The priority functioning mode of this actuator is electric. Be sure than the power supply is switched off before using the manual override.

VR model:

1. Turn the knob to position MAN (counter-clockwise) and hold it in position.
2. Turn the outgoing drive shaft of the actuator with the help of an adjusting spanner.
3. In order to re-engage the reduction, release the knob (spring return).

VS model:

No declutching is required, the hand wheel has simply to be turned (appendix p. 21 mark 10).
The end mechanical stops are pre-set to 90° and stuck (Tubetanche Loctite 577 or equivalent). It is possible to adjust then by moving the 2 screws M8 (appendix p. 21 mark 18) but you need to stick them again in order to en-sure a proper sealing.

Electric wiring

Warnings

Earth	$\underline{ـ}$	Protection Earth	\pm	Dangerous voltage	4	Direct current	=-	Alternative current	\sim

4

- Use only one relay for one actuator.
- As stipulated in the applicable regulation, the connection to earth contact is compulsory for devices with working voltages exceeding 42V.
- The actuator is being always under power, it must be connected to a disconnection system (switch, circuit breaker) to ensure the actuator's power cut. The latter must be closed to the actuator, easy to reach and marked as being the disconnecting device for the equipment.
- The temperature of the terminal can reach $90^{\circ} \mathrm{C}$.
- To optimize the installation security, please connect the failure feedback signal (standard: D1/D2, BBPR: D3/D4 and GPS: 67/68).
- In case of long cables, please note the induction current shall not exceed 1 mA .
- The actuator can tolerate temporary overvoltage of the electrical grid up to $\pm 10 \%$ of its nominal system operating voltage.
- The selection of the cables and cable glands: the maximal operating temperature of the cables and cable-glands must be at least $110^{\circ} \mathrm{C}$. The cables used must be of category UL $90 \mathrm{~V}-0$.
- It is necessary to connect all actuators to an electrical cabinet. The power supply cables must have the RATED diameter for the maximum current supported by the actuator and comply with IEC 60227 or IEC 60245 standards.
- The auxiliary limit switches must be connected with rigid wires. If the applied voltage is higher than 42 V , the user must foresee a fuse in the power supply line and use cables with a cross-section of $1.5 \mathrm{~mm}^{2}$.
- The feedback switches must be powered with the same voltage. The reinforced insulation of the motor control allows voltages up to 250 V AC.
- Connection to feedback microswitches:
- 4 to 24 V DC and 12 to 250 V AC
- minimum current 100 mA
- maximum current 5 A (resistive), 0.5 A (motor), 0.125 A (capacitive loads)
- In order to ensure the IP68 tightness, the cable glands must be used (7 to 12 mm cable). Otherwise, the cable glands must be replaced by a ISO M20 IP68 cap. A cable gland is tight when it has been tighten by one turn ahead of contact between rubber seal and nut.

Electronic boards

Rep.	Description	Rep.	Description
A	Earth screw	E $^{2)}$	LED 3 : Detected failure
B	Pilot and power supply terminals	F	LED 1 : Power presence
C 1)	Card protection fuses	G	Failure report terminal strip (24 V DC / 3A max)
D	LED 2 : microprocessor ok		

1) Fuses for multivolt card :

- Card SNAA730100 : 5A / T 125 V (Littelfuse 39615000000)
- Card SNAA730000 : 3,15A / T 250 V (Multicomp MST 3,15A 250 V)
${ }^{2)}$ Possible defects : limitation of current, thermic limitation or program error
=> check that the valve torque is not superior to the maximum torque stand by the actuator
=> check that the actuator do not exceed the duty cycle indicated (possible overheat)
To re-start the actuator, reverse the sense of rotation or switch the power off and on.

Wiring Instructions

Our cable glands are designed for cables with a diameter between 7 mm and 12 mm .
The actuator can support MAINS supply voltage fluctuations up to $\pm 10 \%$ of the nominal voltage. It is necessary to connect all actuators to an electrical cabinet

- Remove the position indicator, unscrew the four screws and take off the cover.

SUPPLY AND CONTROL WIRING

- Ensure that the voltage indicated on the actuator ID label corresponds to the voltage supply.
- Connect the wires to the connector in accordance with the required control mode. (see diagram p. 8 \& 9)
- To ensure the correct functioning of the anti-condensation heaters, the actuator must be permanently power supplied

EARTH WIRING

The connection to earth is mandatory if the applyed voltage is higher than 42 V . The cable used for earth connection must have the same cross-section as the power cables and be connected by means of a lug to the earth screw (see p. 21 item 17).

WIRING OF THE FEEDBACK SIGNAL (Except POSI: p. 40 \& GPS: p.46)

Our actuators are equipped with two simple limit switch contacts normally set either in open position, either in closed position (see DSBL0470 : 230 V and DSBL0497/DSBL0498: 400 V wiring diagrams inside the glover). As per factory setting, the white cam is used to detect the open position (FC1) and the black cam is used to detect the closed position (FC2).

The auxiliary limit switches must be connect with rigid wires. If the applied voltage is higher than 42V, the user must foresee a fuse in the power supply line.
The voltages applied to each feedback switch (FC1 and FC2, SNAA690000 electronic board) must be exactly the same. The reinforced insulation between the feedback signal and the motor control authorizes voltages up to 250 VAC.

- Unscrew the right cable gland and insert the cable.
- Remove 25 mm of the cable sheath and strip each wire by 8 mm .
- Connect the wires to the terminal strip in accordance with the diagram p. $8(230 \mathrm{~V})$ or p. $9(400 \mathrm{~V})$.
- Tighten the cable gland (Ensure that it's well mounted to guaranty the proofness).

SETTING OF END LIMIT SWITCHES

The actuator is pre-set in our factory. Do not touch the two lower cams in order to avoid any malfunctioning or even damage to the actuator.

- To adjust the position of the auxiliary contacts, make rotate the two superior cams by using the appropriate wrench.
- Re-mount the cover, fasten the four screws and attach the position indicator.

230 V electric diagram

Rep.	Description	Rep.	Description
FCO	Open limit switch	FC1	Auxiliary limit switch 1
FCF	Close limit switch	FC2	Auxiliary limit switch 2
D1/D2	Failure report Terminal strip (24 V DC / 3A max)		

\triangle

- The terminal temperature can reach $90^{\circ} \mathrm{C}$
- The used wires must be rigid

3-phase 400 V electric diagram

Rep.		Description	Rep.	Description	Rep.	Description
FC0	Open limit switch	H4	Motor supply indication	S5	Stop button	
FCF	Close limit switch	H5	Control supply indication	S6	Opening button	
FC1	Auxiliary limit switch 1	KM1	Opening switch	S7	Closing button	
FC2	Auxiliary limit switch 2	KM2	Closing switch	H	Heating resistor	
F1 / F2	Thermal switch	M	Motor			

©

- The terminal temperature can reach $90^{\circ} \mathrm{C}$
- The used wires must be rigid

BBPR models

Actuators with battery backup position recovery system (on-off wiring mandatory)

BBPR models integrate a battery pack monitored by an electronic board inside the actuator. Its function is to re-lay in case of power supply failure on terminal PIN 1, 2 and 3 of the actuator. The BBPR system can be set on different position like normally open (NO) or normally closed (NC). It depends on the application. The electronic board monitors the battery pack and check the status of battery (cycle load and failure) If a battery failure is detected, a contact on PIN 65 and 66 switch off. It's possible to use this contact to be aware that there is a failure on battery in the actuator without remove cover and plan the replacement. BBPR option requires ON/OFF mode.

Loading electronic board

LED		DESCRIPTION
L1	D19 green	Actuator operating into opening
L2	D18 red	Actuator operating into closing
L3	ACT green	Battery status : -Slow blinking (1s) : battery charged. -Rapid blinking (0.5s) : battery charging
L4	ERROR red	Error detected: -Timestamp memory empty/scheduler selected -Clock failure -Excessive temperature -Excessive torque
L5	HORO Orange	Weekly scheduler functioning mode
L6	MANU Orange	manual / Bluetooth® functioning mode
L7	WIRE Orange	Electric wiring mode

CONNECTEUR		DESCRIPTION
C1	$17(-) \cdot 18(+)$	power supply connector
C2	$\mathrm{F}(+) \cdot \mathrm{F}(-) \cdot \mathrm{T}(+)$	Battery unit connector
C3	$\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$	Motor connector
C4 1)	D3 \cdot D4	Failure feedback connector
C5 1)	$65 \cdot 66$	Charging feedback connector
C6	$\mathrm{A} \cdot 0 \cdot$ B	RS485 connector
J1	Bluetooth ${ }^{\oplus}$ activation jumper	

1) The auxiliary cables must be connected to inside installation only

The factory default configuration is "normally closed"
Following a power failure, the BBPR unit will reset after 4 minutes

Thanks to AXMART® (via Bluetooth® connection), it’s possible to set the backup position that the actuator will reach in case of power failure.
it's also possible to access to actuator parameters in real time, to schedule weekly tasks and to control it locally.

For any further information, refer to the operation manual with the reference DSBA3304.

BBPR : electric diagram

POSI: description

Various control types (control signal on terminals $\mathrm{N}^{\circ} 15$ and $\mathrm{N}^{\circ} 16$)

On request, our cards can be set in factory. The consign and the feedback signal can have different forms (current or voltage). Without any information from the customer, the cards are set for current 4-20mA (control + feedback signal).

Control in $0-10 \mathrm{~V}$ modes:

In case of outside event, absence of control signal (accidental wires cut for example) but in presence of power, the actuator will travel to defined position (open or closed valve).
In standard our actuators will close themselves in absence of control signal but there are other possibilities on request.

Control in $4-20 \mathrm{~mA}$ mode:

In case of outside event, absence of control signal (accidental wires cut for example) but in presence of power, the actuator will stay in its position.

In the both cases, when the control signal is restored, the actuator reach automatically the position corresponding to control signal value.

POSI: wiring instructions

©Actuator pre-set in factory.

- In order to avoid electromagnetic perturbations, it is compulsory to use shielded cables (cables longer than 3m).
- Unscrew the right gland and pass the cable.
- Connect the input signal between terminals 15 and 16 (attached p. 13 mark.B). Terminal 15 is the negative po-larity (-) and terminal 16 is the positive polarity (+).
- Connect the output signal between terminals 13 and 14.(attached p. 13 mark.C). Terminal 13 is the positive polarity (+) and terminal 14 is the negative polarity (-).
- Tighten the cable gland (Ensure that it's well mounted to guaranty the proofness).

The feedback must be connect with rigid wires. If the applied voltage is higher than 42 V , the user must foresee a fuse in the power supply line.
Factory setting : by default, 4-20mA input and output signals with normal rotation sense.
To proceed to a new setting of the card : please see page 15, "Parameter selection sequence".
To check the proper operation of the card : please see page 15, "Normal operating mode".

POSI: electronic board

P5 positioning board $4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$

 (0-20 mA on request)

Rep.	Description	Rep.	Description
A	24 V AC/DC power supply terminal trip	H	K2 shunt
B	Instruction terminal trip	I	K3 shunt
C	Feed back terminal trip	J	Green and red LEDs
D	Adjustment button MEM	K	Yellow LED : power supply indication
E	Adjustment button CLOSE	L	Potentiometer
F	Adjustment button OPEN	M	Motor connexion
G	K1 shunt	N	Heating resistor connector

POSI: electric diagram

Rep.	Description	Rep.	Description
FC0	Open limit switch	FC1	Auxiliary limit switch 1
FCF	Close limit switch	FC2	Auxiliary limit switch 2
D1/D2	Failure report Terminal strip (24 V DC / 3A max)		

- For GPS models, refer to the section p. 18 et 19.

- The terminal temperature can reach $90^{\circ} \mathrm{C}$.
- The used wires must be rigid
- For a use with a long power supply wiring, the induction current generated by the wires mustn't be higher than 1 mA .
- The control voltage must be S.E.L.V. (Safety Extra Low Voltage).
- No common earth/ground connexion between the control (input and output signal) and the alimentation. (Type 0-20 or 4-20mA : 5V DC max.)

i

- The card resolution is 1°
- 10 kOhm input impedance if control with voltage $(0-10 \mathrm{~V})$ and 100 Ohm input impedance if control with current (0-20 mA or 4-20 mA)

POSI: parameter selection sequence

$1 \mathrm{~K} 1, \mathrm{~K} 2$ and K 3 shunts positioning
Position the shunts as follows (before modification, switch off the card):

Setpoint signal	Feedback	Schunt K1		Schunt K2		Schunt K3
	\mathbf{A}	B	\mathbf{A}	B		
$0-10 \mathrm{~V}$	$0-10 \mathrm{~V}$	ON	OFF	ON	OFF	OFF
$0-10 \mathrm{~V}$	$0-20 \mathrm{~mA}$	ON	OFF	OFF	ON	OFF
$0-10 \mathrm{~V}$	$4-20 \mathrm{~mA}$	ON	OFF	OFF	ON	ON
$4-20 \mathrm{~mA}$	$0-10 \mathrm{v}$	OFF	ON	ON	OFF	OFF
$4-20 \mathrm{~mA}$	$0-20 \mathrm{~mA}$	OFF	ON	OFF	ON	OFF
$4-20 m A$	$4-20 m A$	OFF	ON	OFF	ON	ON
$0-20 m A$	$0-10 \mathrm{~V}$	OFF	ON	ON	OFF	OFF
$0-20 m A$	$0-20 m A$	OFF	ON	OFF	ON	OFF
$0-20 m A$	$4-20 m A$	OFF	ON	OFF	ON	ON

2.2 Selection of the flow direction of the valve

2.1 Normal flow direction (by default)

- Press the OPEN button and apply the operating voltage to the card while keeping this button pressed.
- The green LED lights up. Release the OPEN button.
- Disconnect the card.
2.2 Inverse flow direction
- Press the CLOSE button and apply the operating voltage to the card while keeping this button pressed.
- The red LED lights up. Release the CLOSE button.
- Disconnect the card.

3 Selection of the type of input control signal

3.1 Voltage control signal 0-10V

- Press the MEM button and apply the operating voltage to the card while keeping this button pressed.
- The red LED will light up 3 times. Release this button.
- Disconnect the card.
3.2 Current control signal 4-20mA (by default)
- Press the MEM and CLOSE buttons and apply the operating voltage to the card while keeping these buttons pressed.
- The red LED will light up 3 times. Release these buttons.
- Disconnect the card.
3.3 Current control signal $0-20 \mathrm{~mA}$
- Press the MEM and OPEN buttons and apply the operating voltage to the card while keeping these buttons pressed.
- The red LED will light up 3 times. Release these buttons.
- Disconnect the card.

4 Learning mode

- Press the OPEN and CLOSE buttons and apply the operating voltage to the card while keeping these buttons pressed.
- The 2 LEDs will light up. Release these buttons and the 2 LEDs will run out. The card is now in the learning mode.
Press the CLOSE button to put the valve in its closed position. The red LED will light up. Store this selected closed position by pushing MEM + CLOSE, the red LED will light up 2 times as a confirmation of acknowledgement.
Press the OPEN button to put the valve in its open position. The green LED will light up. Store this selected open position by pushing MEM + OPEN, the green LED will light up 2 times as a confirmation of acknowledgement.
Now, the positions selected have been stored. Disconnect the card.

NORMAL OPERATING MODE

- Apply the operating voltage to the card. The green LED will light up 3 times.
- Under normal operating conditions, the green LED will light up when the drive motor opens the valve, and the red LED will light up when the drive motor closes it.
- If both LEDs remain ran out, it means that the drive motor has not been triggered.

In the case of an over torque, the motor stops and the 2 LEDS lights then together to indicate the action of the torque limiter. To re-start it, you must either reverse the sense of rotation, either switch the power off and on.

3 positions: description

Actuator with a third position

GF3 option allow actuator to be drive and stop in 3 positions. These 3 positions could be between 0° to 180°. In standard actuators are setting in our workshop at $0^{\circ} 90^{\circ} 180^{\circ}$ that's fit with standard 3 ways ball valve. Others positions still available but customer have to price on the order witch position is request.
These 3 positions are controlled by 4 switches (FCO,FCF,FCIO and FCIF) and 3 switches for feed back signal
Switches FC1,FC2 are NO contact (close the circuit in extreme position) and FC3 is a NC contact (open the circuit in intermediate position).

3 positions: contacts condition

Terminals						
6 \& 9					$\mathbf{4} \& \mathbf{8}$	F4 \& F9
$\mathbf{0}^{\circ}$	Closed	Open	Closed			
inter	Open	Open	Open			
$\mathbf{1 8 0}$	Open	Closed	Closed			

3 positions: electric diagram

Rep.	Description	Rep.	Description
FC0	Open limit switch	FC1	Auxiliary limit switch 1
FCF	Close limit switch	FC2	Auxiliary limit switch 2
FCIO	Intermediate open limit switch	FC3	Auxiliary limit switch 3
FCIF	Intermediate close limit switch	R	Red
W	White	B	Black
D1/D2	Failure report Terminal strip (24 V DC / 3A max)		

\triangle

- The terminal temperature can reach $90^{\circ} \mathrm{C}$
- The used wires must be rigid

GPS : description

The GPS version includes BBPR and positioning function.
Thanks to AXMART ${ }^{\oplus}$ (via Bluetooth ${ }^{\circledR}$ connection), it's possible to set the backup position that the actuator will reach in case of power failure (BBPR function) as well as setpoint and feedback signal type (positioning function).
it's also possible to access to actuator parameters in real time, to schedule weekly tasks and to control it locally.

For any further information, refer to the operation manual (DSBA3304).

The factory default configuration is "normally closed"

Be sure you connect the terminal $15(-)$ before the terminal 16 (+)

Following a power failure, the BBPR unit will reset after 4 minutes.

Voltage	24 V DC
Battery capacity	600 mAh
Charging current	180 mA
Maximum battery charge duration	$3,5 \mathrm{~h}$
Charging status feedback relay $(65 / 66)$	$24 \mathrm{~V} \mathrm{DC}-1 \mathrm{~A} \mathrm{max}$
Failure feedback relay $(67 / 68)$	$24 \mathrm{~V} \mathrm{DC}-3 \mathrm{~A} \mathrm{max}$
Temperature	$-10^{\circ} \mathrm{C} \mathrm{to}+40^{\circ} \mathrm{C}$

TERMINALS	DESCRIPTION
$17(-) \bullet 18(+)$	power supply connector
$\mathrm{F}(+) \bullet \mathrm{F}(-) \bullet \mathrm{T}(+)$	Battery connector
$65 \bullet 66$	Charging feedback connector
$67 \bullet 68$	Failure feedback connector
$\mathrm{A} \bullet 0 \bullet \mathrm{~B}$	RS485 connector
$15(-) \bullet 16(+)$	Positioning setpoint signal connector $(0-10 \mathrm{~V}$ or 4-20 mA)
$13 \mathrm{~A}(+) \bullet 13 \mathrm{~B}(+) \bullet 14(-)$	Positioning feedback signal connector $13 \mathrm{~A}=0-10 \mathrm{~V}$ et 13B=4-20 mA
CV 1	Bluetooth ${ }^{\oplus}$ activation jumper

LED	DESCRIPTION
MANU	manual / Bluetooth® functioning mode
HORO	Weekly scheduler functioning mode
APPR	Learning mode selected
POSI	Positioning mode
ERROR	Error detected: $-\quad$ Timestamp memory empty/scheduler selected $-\quad$ Clock failure $-\quad$ Excessive temperature $-\quad$ Excessive torque
ACT	Power supply: $-\quad$ Slow blinking (1 s) : charged battery - Rapid blinking (0.5 s) : battery charging
APPR1	Open position stored (confirmation)

GPS : learning mode

- Switch on the actuator
- Press both OPEN and CLOSE buttons until the learning mode is selected, (APPR LED on).
- Press CLOSE button. The valve operate into closed position.
- When the valve is closed, press both CLOSE and MEM buttons during 2 seconds.
- The APPR2 led blinks rapidly and then lights on. The closed position is stored.
- Press OPEN button. The valve operate into open position.
- When the valve is open, press both OPEN and MEM buttons during 2 seconds.
- The APPR1 led blinks rapidly and then lights on. The closed position is stored
- Exit the learning mode by simultaneously pressing the OPEN and CLOSE buttons to the POSI mode.

GPS : electric diagram

- The pin 15 (-) of the setpoint signal must be connected to earth
- The terminal temperature can reach $90^{\circ} \mathrm{C}$
- The used wires must be rigid
- The terminal switch 6768 must be wired with positive DC current (24 V 3A max.).
- For a use with a long power supply wiring, the induction current generated by the wires mustn't be higher than 1 mA .
- The control voltage must be S.E.L.V. (Safety Extra Low Voltage).
- No common earth/ground connexion between the control (input and output signal) and the alimentation. (Type 4-20mA: 5V DC max.)

i

- The card resolution is 1°
- 10 kOhm input impedance if control with voltage ($0-10 \mathrm{~V}$) / 100 Ohm input impedance if control with current ($4-20 \mathrm{~mA}$)

GFS: description \& electric diagram

GFS model includes a BBPR unit and 3 positions

Rep.	Designation	Rep.	Designation
FCO	Open limit switch	FC1	Auxiliary limit switch 1
FCF	Close limit switch	FC2	Auxiliary limit switch 2
FClO	Intermediate open limit switch	FC3	Auxiliary limit switch 3
FCIF	Intermediate close limit switch	D3/D4	Failure report Terminal strip (24 V DC / 3A max)

$!$

- The terminal temperature can reach $90^{\circ} \mathrm{C}$
- The used wires must be rigid
- For a use with a long power supply wiring, the induction current generated by the wires mustn't be higher than 1 mA .

Exploded view

Rep. Designation	Rep.	Designation	
1	Visual position indicator	10	Hand wheel
2	Cover	11	Housing
3	Stainless steel screws	12	ldentification label
4	Motor	13	Auxiliary limit switch terminal
5	Pilot and power supply card	14	Cams
6	Gear box plate	15	Pilot and power supply terminal
7	O ring	16	ISO M20 gland
8	Gear box	17	Earth screw
9	Clutch knob	18	Mechanical end stops

VR technical specifications

	VR25 VR45 MRT5
Installation	
IP protection (EN60529)	IP68 (5 m 72 h)
Corrosion resistance (outdoor and indoor use)	Housing: Aluminium + EPOXY paint / cover: PA6 UL 94 V-0 or Aluminium + EPOXY paint Drive: Steel +Zn treatment / Axles and screws: Stainless steel
Temperature	$-20^{\circ} \mathrm{C}$ à $+70^{\circ} \mathrm{C}$ (BBPR/GPS/GFS : $-10^{\circ} \mathrm{C}$ à $\left.+40^{\circ} \mathrm{C}\right)$
Hygrometry	maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$
Pollution degree	Applicable POLLUTION DEGREE of the intended environment is 2 (in most cases).
Altitude	altitude up to 2000 m
Extended environmental conditions (IEC61010)	Use indoor, outdoor and in WET LOCATION
Sound level	61 dB
Weight	3,1 kg to $3.5 \mathrm{Kg} \max$ (4 Kg to $4,4 \mathrm{~kg}$ with aluminium cover)

Mechanical specifications

Nominal torque	20 Nm	35 Nm	60 Nm
Maximum torque	25 Nm	45 Nm	75 Nm
Operating time $\left(90^{\circ}\right)$	$7 \mathrm{~s}(400 \mathrm{~V}: 10 \mathrm{~s})$	$15 \mathrm{~s}(400 \mathrm{~V}: 10 \mathrm{~s})$	$20 \mathrm{~s}(400 \mathrm{~V}: 15 \mathrm{~s})$
Drive ISO5211	Star 17 F05-F07		
Rotation angle	90° (others on request)		
Mechanical stops	90° or 180°		
Manual override	External shaft		
Direction of rotation	Anticlockwise to open		

Electrical specifications

Voltage ${ }^{1)}$ (standard)	100 V to 240 V AC $50 / 60 \mathrm{~Hz}$ and 100 V to 350 V DC 15 V to $30 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ and 12 V to 48 V DC 3-phase 400 V $50 / 60 \mathrm{~Hz}$
Voltage ${ }^{1)}$ (GP5 and GF3)	100 V to 240 V AC $50 / 60 \mathrm{~Hz}$ and 100 V to 350 V DC 15 V to $30 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ and 12 V to 48 V DC
Voltage ${ }^{1)}$ (GS6, GPS and GFS)	100 V to $240 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz} \mathrm{and} 100 \mathrm{~V}$ to 350 V DC 24 V to $30 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz} \mathrm{and} 24 \mathrm{~V}$ to 48 V DC
Overvoltage category ${ }^{2)}$	TRANSIENT OVERVOLTAGES up to the levels of OVERVOLTAGE CATEGORY ॥ TEMPORARY OVERVOLTAGES occurring on the MAINS supply.
Power consumption	45 W - (52 W for 400 V)
Insulation motor class	Class B 400 V motors and class F for the others
Torque limiter (except 400 V)	Electronic
Duty cycle (IEC60034)	50 \%
Limit switches voltage	12 to 250 V AC and 4 to 24 V DC
Limit switches current	Min. 100 mA Max. 5 A (resistive), 0.5 A (motor), 0.125 A (capacitive loads)
Anticondensation heaters	10 W
Inrush current	Circuit breaker type D, nominal current according the number of actuators (max. 4 actuators) or use a inrush current limiter at the output of the circuit breaker.

1) The actuator tolerates voltage fluctuation of the electrical grid up to $\pm 10 \%$ of its nominal system operating voltage
2) The actuator tolerates temporary overvoltages of the electrical grid.

VS technical specifications

	MS100 H/5000
Installation	
IP protection (EN60529)	IP68 (5 m 72 h)
Corrosion resistance (outdoor and indoor use)	Housing: Aluminium + EPOXY paint / cover: PA6 UL 94 V-0 or Aluminium + EPOXY paint Drive: Steel +Zn treatment / Axles and screws: Stainless steel
Temperature	$-20^{\circ} \mathrm{C}$ à $+70^{\circ} \mathrm{C}\left(\mathrm{BBPR} / \mathrm{GPS} / \mathrm{GFS}:-10^{\circ} \mathrm{C}\right.$ à $\left.+40^{\circ} \mathrm{C}\right)$
Hygrometry	maximum relative humidity 80% for temperatures up to $31^{\circ} \mathrm{C}$ decreasing linearly to 50% relative humidity at $40^{\circ} \mathrm{C}$
Pollution degree	Applicable POLLUTION DEGREE of the intended environment is 2 (in most cases).
Altitude	altitude up to 2000 m
Extended environmental conditions (IEC61010)	Use indoor, outdoor and in WET LOCATION
Sound level	61 dB
Weight	$5,1 \mathrm{~kg}$ to $5.5 \mathrm{Kg} \max$ (6 Kg to 6,4 kg with aluminium cover)
Mechanical specifications	
Nominal torque	75 Nm 2125 Nm 250 Nm
Maximum torque	100 Nm 300 Nm 300 Nm
Operating time (90°)	$15 \mathrm{~s}(400 \mathrm{~V}: 10 \mathrm{~s}) \quad 30 \mathrm{~s}(400 \mathrm{~V}: 20 \mathrm{~s}) \quad 60 \mathrm{~s}(400 \mathrm{~V}: 35 \mathrm{~s})$
Drive ISO5211	Star 22 F07-F10
Rotation angle	90° (others on request)
Mechanical stops	90°
Manual override	Wheel
Direction of rotation	Anticlockwise to open

Electrical specifications

Voltage ${ }^{1)}$ (standard)	100 V to 240 V AC $50 / 60 \mathrm{~Hz}$ and 100 V to 350 V DC 15 V to 30 V AC $50 / 60 \mathrm{~Hz}$ and 12 V to 48 V DC 3 -phase $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Voltage ${ }^{1)}$ (GP5 and GF3)	100 V to 240 V AC $50 / 60 \mathrm{~Hz}$ and 100 V to 350 V DC 15 V to $30 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ and 12 V to 48 V DC
Voltage ${ }^{1)}$ (GS6, GPS and GFS)	100 V to $240 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ and 100 V to 350 V DC 24 V to $30 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ and 24 V to 48 V DC
Overvoltage category ${ }^{2)}$	TRANSIENT OVERVOLTAGES up to the levels of OVERVOLTAGE CATEGORY ॥ TEMPORARY OVERVOLTAGES occurring on the MAINS supply.
Power consumption	45 W - (135 W for 400 V)
Insulation motor class	Class B 400 V motors and class F for the others
Torque limiter (except 400 V)	Electronic
Duty cycle (IEC60034)	50 \%
Limit switches voltage	12 to 250 V AC and 4 to 24 V DC

Limit switches current	Min. 100 mA Max. 5 A (resistive), 0.5 A (motor), 0.125 A (capacitive loads)
Anticondensation heaters	10 W
Inrush current	Circuit breaker type D, nominal current according the number of actuators (max. 4 actu- ators) or use a inrush current limiter at the output of the circuit breaker.

[^0]
Product marking

Warning label (outside - cover)	
3	SHUT OFF THE POWER SUPPLY BEFORE OPENING
0	METTRE HORS TENSION AVANT OUVERTURE
	NETZANSCHLUSS UNTERBRECHEN VOR ÖFFNEN
	CORTAR LA ALIMENTACION ELECTRICA ANTES DE ABRIR
4	TOGLIERE L'ALIMENTAZIONE ELETTRICA PRIMA DI APRIRE
	SLUIT DE STROOMTOEVOER AF VOOR OPENING
	BRYT STRÖMMEN INNAN ÖPPNING
	ОТКЛЮЧИТЕ ЭЛЕКТРОПИТАНИЕ ПЕРЕД СНЯТИЕМ КРЫШКИ

Electric wiring diagrams (inside - cover)

VR/VS multivolt (except POSI)

VR/VS multivolt POSI

VR/VS 3-phase 400 V

[^0]: ${ }^{\text {1) }}$ L'actionneur accepte les fluctuations de la tension du RÉSEAU d'alimentation jusqu'à $\pm 10 \%$ de la tension nominale.
 ${ }^{2)}$ Accepte les surtensions temporaires survenant sur le réseau d'alimentation.

